大脑提取是预处理3D脑MRI数据的第一步之一。它是任何即将进行的大脑成像分析的先决条件。但是,由于大脑和人头的复杂结构,这并不是一个简单的分割问题。尽管文献中已经提出了多种解决方案,但我们仍然没有真正强大的方法。尽管以前的方法已将机器学习与结构/几何先验使用,但随着计算机视觉任务中深度学习的发展,对于此语义分割任务,建议的卷积神经网络体系结构有所增加。但是,大多数模型都致力于改善培训数据和损失功能,而架构的变化很小。在本文中,我们提出了一种称为EVC-NET的新颖架构。 EVC-NET在每个编码器块上添加了较低的比例输入。这增强了V-NET体系结构的多尺度方案,从而提高了模型的效率。有条件的随机字段,是深度学习时代之前的图像分割的一种流行方法,在这里重新引入,作为完善网络输出以捕获细分粒度结果的额外步骤。我们将我们的模型与HD-BET,Synthstrip和Brainy等最新方法进行比较。结果表明,即使训练资源有限,EVC-NET也可以达到更高的骰子系数和Jaccard指数以及较低的表面距离。
translated by 谷歌翻译
以任务为导向的对话系统通常采用对话状态跟踪器(DST)成功完成对话。最近的最新DST实现依赖于各种服务的模式来改善模型的鲁棒性并处理对新域的零击概括[1],但是这种方法[2,3]通常需要多个大型变压器模型和长时间输入序列以表现良好。我们提出了一个基于多任务BERT的单个模型,该模型共同解决了意图预测的三个DST任务,请求的插槽预测和插槽填充。此外,我们提出了对对话历史和服务模式的高效和简约编码,该编码被证明可以进一步提高性能。对SGD数据集的评估表明,我们的方法的表现优于基线SGP-DST,比最新的方法相比表现良好,同时在计算上的效率更高。进行了广泛的消融研究,以检查我们模型成功的促成因素。
translated by 谷歌翻译
神经风格转移(NST)与视觉媒体的艺术风格有关。它可以描述为将艺术图像风格转移到普通照片上的过程。最近,许多研究考虑了NST算法的深度保护功能的增强,以解决当输入内容图像包含许多深度的众多对象时发生的不希望的效果。我们的方法使用了一个深层残留卷积网络,并使用实例归一化层,该层利用高级深度预测网络将深度保存作为内容和样式的附加损失函数集成。我们展示了有效保留内容图像的深度和全局结构的结果。三个不同的评估过程表明,我们的系统能够保留风格化结果的结构,同时表现出样式捕捉功能和美学质量,或与最先进的方法相当或优越。项目页面:https://ioannoue.github.io/depth-aware-nst-using-in.html。
translated by 谷歌翻译